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Triangular G2-Splines

Hartmut Prautzsch and Georg Umlauf

Abstract. We introduce curvature continuous regular free-form surfaces
with triangular control nets. These surfaces are composed of quartic box
spline surfaces, and are piecewise polynomial multisided patches of total
degree 8 which minimize some energy integral. The B6zier nets can be
computed efficiently from the spline control net by some fixed masks, i.e.
matrix multiplications.

§1. Introduction

Most methods known for building Gk-free-form surfaces need polynomials of
relatively high degree, namely 0(k2 ), see for example [2,3]. Only recently in
1995 this high degree was beaten by two methods giving Gk-free-form surfaces
of bidegree 2k + 2 with singular [6] and regular [4] parametrizations, respec-
tively. These low degree surfaces can be represented by a control net [4] or a
quasi control net [6], and can be designed so as to allow for subdivision.

In this paper we will transfer the method given in [4] to triangular box
splines. Here we restrict ourselves to G2-surfaces which are the most important
for practical applications besides Gl-surfaces. Further details and the general
case are presented in [5,7].

This paper is organized as follows. In Section 2 we introduce n-sided
G2-patches. These patches are used together with generalized C 2-box spline
surfaces to build surfaces of arbitrary topology. How the free parameters in
the construction can be used to generate G2 -splines that minimize certain
energy functionals and how these G 2-splines can be generated efficiently will
be discussed in Section 3.

§2. p-Patches

The simplest C 2-box splines are those over the three-directional grid of total
polynomial degree four. In this paper we consider only these box splines. A
quartic box spline surfaces has a regular triangular control net and each of its
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Fig. 1. Schematic illustration of a quartic box spline patch (gray) and its control
net.

polynomial patches is determined by 12 vertices (called control points) which
are arranged as in Fig. 1.

Furthermore, we can identify in any triangular net regular subnets of the
form of Fig. 1. These subnets determine patches forming a generalized box
spline surface. A generalized box spline surface has holes corresponding to
the irregular vertices in the net. An example is shown in Fig. 2: The control
net (left) contains an irregular vertex of valence 8 and the generalized box
spline surface (right) has an 8-sided hole.

Fig. 2. A triangular net with a vertex of valence 8 (left) and the corresponding
generalized quartic box spline surface with an 8-sided hole (right).

If every irregular vertex is surrounded by at least three rings of regular
vertices, every irregular vertex corresponds to exactly one hole in the general-
ized quartic box spline surface. In this case an n-sided hole is surrounded by
a complete surface ring consisting of 3n patches.

We now describe how to fill such holes with regular G2-surfaces:

First: for any n > 3, n 0 6, we define a special generalized box spline surface
that lies in the xy-plane and has the control net shown in Fig. 3 (left) for
n = 5. Its control points are the points

Cijk :=: j ci + [k Ci+ l
L8 iJ I Ji1
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for i = 1,...,n and j = 0,...,3 and k = 0,...,3- j, where ci = cos(2ii-i/n)
and si = sin(21ri/n). Thus this surface consists of 3n patches, say xn+l, ... ,
x4 n, which are shown schematically in Fig. 3 (right).

X2 n+ 2

X~n 2Xý +2 X~n+1

Xl,...X ,xX rghn
xn~l...,x~nseeFig.3 (rght) Le

C412 S ~
OC 421  X3 n

C430

Fig. 3. The control net Of Xn+1, .. X4n (left) and the 4n planar patches
X1, -. - ,X4n (right).

Second: we construct n patches X1,.., x,1 filling the hole left by the patches
Xn1..7X. see Fig. 3 (right). Let

xl(u,v,w) = E bYjkBtjk(u,v,w)

be the quartic B~zier representation of the patch xL, where u, v, w are barycen-
tric coordinates with respect to some reference triangle, i.e. u > 0, v > 0, w > 0
and u + v + w = 1. The B4zier points of xj are determined such that x, has
C 2-contact with xn+l. This fixes, say bWjk, for i = 0, 1,2. Further, we set
bo400 = 0 and b'Jk = b2,2j, 2 k/2. Fig. 4 shows these B1zier points for n = 5.
Note that the scaling differs from Fig. 3.
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Fig. 4. The BWzier points of Xl,... ,Xn for n = 5.

Lemma 1. The patches xl,..., X4n are regular and form a surface without
self intersections.
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0 G-points

* B-points

El R-points

Fig. 5. The BWzier points of a p-patch for n = 5.

A proof of this Lemma can be found in [5].

Third: for any polynomial p : R2 _ R3 we call the union of all patches

pi(u,v,w)=p(xi(u,v,w)), i= 1,...,4n,

a p-patch. In the sequel we only consider p-patches of degree (4 or) 8 deter-
mined by a (linear or) quadratic polynomial p. The B1zier points of such a
p-patch are illustrated schematically in Fig. 5 for n = 5.

Since for i = n + 1,... ,2n the patch xi has C 2-contacts with xi, Xi+n
and Xi+2n the patch pi also has C 2 -contacts with Pi-n, Pi+n and Pi+2n. Sim-
ilarly, P2n+i and P3n+i+l have C 2-contact for i = 1,...,n, where P4n+1 =

P3n+.1 Moreover, since a p-patch is part of a polynomial surface each pi, i =
1,... ,n, has G 2-contact with Pi-1, where P0 := Pn.

The B~zier points that define the G 2-conditions between the patches
P1,... , Pn are marked by the underlying dark area in Fig. 5. We call them
the G-points of the p-patch. Leaving these points fixed and changing the
other B6zier points arbitrarily such that all C 2-joints between adjacent pi
are preserved, we obtain a modified p-patch. In general, it does not lie on a
polynomial surface, but we will still call such a modified p-patch a p-patch.

Theorem 2. Any n-sided hole of a generalized box spline surface can be filled
by a p-patch having a C 2-joint with the generalized box spline surface.

Proof: The boundary and the cross boundary derivatives up to order two of
an n-sided p-patch are determined by 45n B6zier points. We call these the
B-points of the p-patch. In Fig. 5 they are marked by the grey area.

The B-points can be changed such that the p-patch fits into an n-sided
hole of a generalized box spline surface with a C 2-contact. The remaining
points without the G-points, here called R-points, can then be adjusted such
that any patch Pn+l, .. , P4n of the p-patch has C 2 -contact with all its neigh-
bours. Namely, all C 2-conditions involving R-points form a linear system
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o A-points

o B-points

Fig. 6. A possible arrangement of the A-, B-, D- and G-points of pi U Pi+n U
Pi+2n U Pi+3n, i •,..., n.

for the R-points. The matrix of this system is square if we add enough zero
rows. After an appropriate permutation of its columns it is even a block-cyclic
matrix. This system has an 18n parametric solution. Hence there are 18n
R-points that can be chosen arbitrarily. We call them A-points. The other R-
points are then determined by the A-,B- and G-points via the C 2 -constraints.
We call these the D-points.

Fig. 6 shows a possible choice for the A- and D-points. Note that this
choice is not unique. El

§3. Fair p-Patches

The construction of a p-patch that fills a hole of a generalized box spline
surface in Theorem 2 is such that different coordinates do not interfere with
each other. So, without loss of generality, we restrict ourselves to scalar valued
p-patches in the sequel. Thus a point is no longer a point in R3 , but in JR1 .

The G-points of a p-patch are certain B~zier points of a reparametrized
quadratic, say

2 2-i

q(x, y) = E Eqij xtyi.
i=0 j=0

Hence the G-points depend linearly on the six coefficients qij, which we call
the Q-points.

Further, as explained in the proof of Theorem 2, the D-points depend
linearly on the A-, B- and G-points. Thus, if we consider the B-points fixed,
all other B~zier points of the p-patch depend linearly on the six values qij and
the 18n A-points.

To obtain good looking surfaces we determine these 6 + 18n free parame-
ters such that the p-patch minimizes a quadratic fairness functional. We tried
several functionals including the thin plate energy [1]. Judging the visual ap-
pearance of the surfaces by their isophotes we got the best results with the
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Fig. 7. An initial control net (left), parameter lines of the resulting G2-surface
(middle), top-view of the surface showing isophotes (right).

functional

F= 4n t 3 Pi) + (93 pi) + &fi P 2) du ddvdw.

The D-points of the p-patch depend linearly on the A-, B- and Q-points.
So we can view F as a quadratic functional in the A-, B- and Q-points.

Since F is positive definite, it is minimal for fixed B-points if its deriva-
tives with respect to the A- and Q-points are zero. Differentiating F = 0 with
respect to the A- and Q-points leads to equations that are linear in the A-, B-
and Q-points. Solving for the A- and Q-points shows that the Bdzier points
of the p-patch minimizing F depend linearly on the B-points. In other words,
there is a matrix Mn depending only on F and n such that Mnb is the vector
of all B6zier points if b is the vector of all B-points.

Fig. 7 shows an example for the G2-p-patch construction. The initial
triangular control net has an irregular vertex of valence 5. The isophotes
confirm that the resulting surface is G 2.

Fig. 8 shows a similar example. The control net is the same as in Fig. 7.
However, here we used a p-patch consisting of 9n, n = 5, rather that 4n
patches to fill the n-sided hole of the generalized box spline surfaces.

Fig. 8. Parameter lines of the resulting G2-surface (left), top-view of the surface
showing isophotes (right).

A more complex example is shown in Fig. 9. This G2-surface was com-
puted by the same method as Fig. 7.
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Fig. 9. An initial control net (left), the generalized quartic box spline surface
with several holes (middle), the resulting surface where every hole is
filled with a p-patch (right).

Remark 3. The matrices M 3 , M4 , M5 , M 7 , M8 and M 9 can be found on the
website http://i33www. ira. uka. de.

Remark 4. The construction above can be generalized for generalized box
and half box spline surfaces of smoothness order 2k and 2k - 1, respectively,
see [5].
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